Multi-Objective Design Exploration for Aerodynamic Configurations

نویسندگان

  • Shigeru Obayashi
  • Shinkyu Jeong
  • Kazuhisa Chiba
چکیده

A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization problems. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. Two data mining examples using high fidelity simulation codes are presented: four-objective aerodynamic optimization for the fly-back booster and Multidisciplinary Design Optimization problem for a regional-jet wing. The first example confirms that two different data mining techniques produce consistent results. The second example illustrates the importance of the present approach because design knowledge can produce a better design even from the brief exploration of the design space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems

In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...

متن کامل

Multi-objective optimisations for a superscalar architecture with selective value prediction

This work extends an earlier manual design space exploration of our developed Selective Load Value Prediction based superscalar architecture to the L2 unified cache. After that we perform an automatic design space exploration using a special developed software tool by varying several architectural parameters. Our goal is to find optimal configurations in terms of CPI (Cycles per Instruction) an...

متن کامل

Multi-Objective Optimizations for a Superscalar Architecture with Selective Value Prediction

This work extends an earlier manual design space exploration of our developed Selective Load Value Prediction based superscalar architecture to the L2 unified cache. After that we perform an automatic design space exploration using a special developed software tool by varying several architectural parameters. Our goal is to find optimal configurations in terms of CPI (Cycles per Instruction) an...

متن کامل

Efficient Aerodynamic Optimization Using a Multiobjective Optimization Based Framework to Balance the Exploration and Exploitation

In many aerospace engineering design problems, objective function evaluations can be extremely computationally expensive, such as the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational fluid dynamics (CFD) simulation. A widely used approach for dealing with expensive optimization is to use cheap global surrogate (approximation) models to substitute expensive...

متن کامل

Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank

In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007